Logisches Denken von Künstlicher Intelligenz: Eine Analyse der Apple-Studie

Kategorien:
No items found.
Freigegeben:
October 16, 2024

Artikel jetzt als Podcast anhören

Logisches Denken bei KI: Apple-Studie sorgt für Aufsehen

Künstliche Intelligenz (KI) hat in den letzten Jahren enorme Fortschritte gemacht, insbesondere im Bereich der Sprachmodelle. Doch wie intelligent sind diese Modelle wirklich? Eine neue Studie von Apple-Forschern wirft nun die Frage auf, ob große Sprachmodelle (LLMs) überhaupt zu echtem logischen Denken fähig sind.

"Reasoning" als Herausforderung für LLMs

Der Begriff "Reasoning" – zu Deutsch: logisches Denken oder Schlussfolgern – ist in aller Munde, wenn es um die Fähigkeiten von KI-Modellen geht. Die Apple-Studie, die sich mit den mathematischen Fähigkeiten von LLMs auseinandersetzt, kommt jedoch zu dem Schluss, dass diese Modelle noch weit davon entfernt sind, tatsächlich logisch denken zu können.

Mustererkennung statt echtes Verständnis

Die Forscher stellten fest, dass LLMs zwar komplexe Aufgaben lösen können, dies aber in erster Linie auf ausgefeiltem Pattern-Matching beruht. Das bedeutet, dass die Modelle Muster in den Trainingsdaten erkennen und diese auf neue Aufgaben anwenden, anstatt die zugrundeliegenden Konzepte tatsächlich zu verstehen.

Problematisch wird es, wenn die Aufgaben komplexer werden oder irrelevante Informationen enthalten. In diesen Fällen stoßen die LLMs an ihre Grenzen. So führte beispielsweise die Ergänzung einer Textaufgabe um ein irrelevantes Detail dazu, dass die Modelle die Aufgabe falsch lösten.

"GSM-Symbolic": Ein neuer Benchmark für LLMs

Um die Fähigkeiten von LLMs im Bereich des logischen Denkens besser bewerten zu können, haben die Apple-Forscher einen neuen Benchmark namens "GSM-Symbolic" entwickelt. Dieser soll den bisherigen "GSM8K"-Benchmark ablösen und eine differenziertere Bewertung der Modelle ermöglichen.

Bedeutung für die KI-Entwicklung

Die Ergebnisse der Apple-Studie sind von großer Bedeutung für die zukünftige Entwicklung von KI. Sie zeigen, dass die bloße Skalierung von Daten und Rechenleistung nicht ausreicht, um LLMs zu echtem logischen Denken zu befähigen. Stattdessen sind neue Ansätze erforderlich, die den Modellen ein tieferes Verständnis der zugrundeliegenden Konzepte ermöglichen.

Fazit: KI-Modelle noch weit entfernt von menschlicher Intelligenz

Die Studie von Apple macht deutlich, dass KI-Modelle zwar beeindruckende Fortschritte erzielt haben, aber noch weit davon entfernt sind, die Komplexität menschlichen Denkens zu erreichen. Bis KI-Systeme tatsächlich "verstehen" und "denken" können, ist es noch ein weiter Weg. Die Forschung in diesem Bereich ist jedoch von entscheidender Bedeutung, um die enormen Potenziale von KI in Zukunft voll ausschöpfen zu können.

Bibliographie

Schwan, Ben. "Apple-Studie: Logisches Denken von KI kaum nachweißbar und "sehr fragil"". heise online, 10. Oktober 2024, https://heise.de/-9980855. Zugegriffen am 16. Oktober 2024. Petereit, Dieter. "Apple-Studie: LLM-basierte KI-Modelle können nicht logisch denken". t3n.de, 14. Oktober 2024, https://t3n.de/news/apple-studie-llm-basierte-ki-modelle-koennen-nicht-logisch-denken-1651431/. Zugegriffen am 16. Oktober 2024. "Studie: Apple-Forscher finden keine Hinweise auf echtes KI-Reasoning". Golem.de, 14. Oktober 2024, https://www.golem.de/news/studie-apple-forscher-finden-keine-hinweise-auf-echtes-ki-reasoning-2410-189777.html. Zugegriffen am 16. Oktober 2024. Heinrich, Jörg. "Apple-Studie zeigt: KI kann nicht logisch denken". W&V, 15. Oktober 2024, https://www.wuv.de/Themen/KI-Tech/Apple-Studie-zeigt-KI-kann-nicht-logisch-denken. Zugegriffen am 16. Oktober 2024. "Kein logisches Denken: Apple zweifelt an KI-Fähigkeiten". ifun.de, 15. Oktober 2024, https://www.ifun.de/kein-logisches-denken-apple-zweifelt-an-ki-faehigkeiten-241481/. Zugegriffen am 16. Oktober 2024. Gerber, Julia Isabelle. "Apple-Studie: LLM-basierte AI-Modelle können nicht richtig rechnen und denken". TrendingTopics.eu, 14. Oktober 2024, https://www.trendingtopics.eu/apple-studie-llm-basierte-ai-modelle-koennen-nicht-richtig-rechnen-und-denken/. Zugegriffen am 16. Oktober 2024. "Apple-Studie: KI-Modelle scheitern an logischen Denkaufgaben". MacTechNews.de, 15. Oktober 2024, https://www.mactechnews.de/news/article/Apple-Studie-KI-Modelle-scheitern-an-logischen-Denkaufgaben-185886.html. Zugegriffen am 16. Oktober 2024. "Kein Fünkchen Verständnis: Apple-Forscher bezweifeln Logik-Fähigkeiten von OpenAI o1". The Decoder, 12. Oktober 2024, https://the-decoder.de/kein-fuenkchen-verstaendnis-apple-forscher-bezweifeln-logik-faehigkeiten-von-o1/. Zugegriffen am 16. Oktober 2024. "Künstliche Intelligenz". Wirtschaftsdienst, vol. 103, no. 8, 2023, pp. 539–602., https://www.wirtschaftsdienst.eu/archiv/jahr/2023/heft/8.html?pdf=files/journal-issues/wirtschaftsdienst/pdf/2023/wirtschaftsdienst-2023-08-.pdf. Zugegriffen am 16. Oktober 2024.
Was bedeutet das?

Wie können wir Ihnen heute helfen?

Das Expertenteam von Mindverse freut sich darauf, Ihnen zu helfen.