Wähle deine bevorzugte Option:
für Einzelnutzer
für Teams und Unternehmen
Große Sprachmodelle (LLMs) haben in den letzten Jahren bemerkenswerte Fortschritte in der Softwareentwicklung erzielt, insbesondere bei Aufgaben der Codegenerierung. Ein Bereich, der für diese Modelle jedoch nach wie vor eine Herausforderung darstellt, ist das sogenannte "Fill-in-the-Middle" (FIM), bei dem fehlender Code im Kontext von vorhandenem Code generiert werden soll.
Im Gegensatz zur herkömmlichen Codegenerierung, die in der Regel linear von links nach rechts erfolgt, erfordert FIM die Fähigkeit, Code an einer beliebigen Stelle innerhalb eines bestehenden Codeblocks einzufügen. Dies stellt LLMs vor die komplexe Aufgabe, die Semantik und Syntax sowohl des vorangehenden als auch des nachfolgenden Codes zu verstehen und zu berücksichtigen.
Bisherige Ansätze zur Implementierung von FIM in LLMs basierten hauptsächlich auf der Umsortierung der Trainingsdaten, um auch den Kontext des nachfolgenden Codes als Eingabe für das Modell bereitzustellen. Diese Methoden haben jedoch oft mit Problemen bei der fließenden Integration des generierten Codes in den bestehenden Code zu kämpfen.
Eine neue Forschungsarbeit von Ding et al. stellt einen vielversprechenden Ansatz zur Verbesserung der FIM-Fähigkeiten von LLMs vor: die Horizon-Length Prediction (HLP). HLP zielt darauf ab, LLMs die Fähigkeit zu vermitteln, die Länge des zu generierenden Codes im Voraus zu planen, anstatt sich auf eine Token-für-Token-Generierung zu verlassen.
Im Wesentlichen erweitert HLP das Training von LLMs um die Aufgabe, die Anzahl der fehlenden Tokens im "Middle"-Abschnitt des Codes vorherzusagen. Diese zusätzliche Information ermöglicht es dem Modell, eine bessere Vorstellung von der Gesamtstruktur des zu generierenden Codes zu entwickeln und somit eine kohärentere und kontextadäquatere Generierung zu gewährleisten.
Die ersten Ergebnisse der Forschungsarbeit von Ding et al. deuten darauf hin, dass HLP das Potenzial hat, die FIM-Leistung von LLMs signifikant zu verbessern. Im Vergleich zu herkömmlichen Ansätzen konnte HLP die Genauigkeit der Codegenerierung in verschiedenen Benchmarks um bis zu 24% steigern.
Darüber hinaus hat sich gezeigt, dass HLP auch die Leistung von LLMs bei anderen Aufgaben, wie z.B. dem Code Reasoning, verbessert. Dies deutet darauf hin, dass die Fähigkeit zur Planung der Codegenerierung über längere Abschnitte hinweg ein grundlegendes Element für ein tieferes Codeverständnis ist.
Die Horizon-Length Prediction stellt einen vielversprechenden neuen Ansatz zur Verbesserung der Fill-in-the-Middle-Fähigkeiten von LLMs dar. Durch die Integration von vorausschauender Planung in den Generierungsprozess können LLMs lernen, Code zu generieren, der sich nahtlos in den bestehenden Code einfügt und gleichzeitig die Syntax und Semantik des umgebenden Codes respektiert.
Obwohl sich HLP noch in einem frühen Stadium befindet, birgt es ein großes Potenzial, die Art und Weise, wie wir Code mithilfe von KI generieren und bearbeiten, zu revolutionieren. Die weitere Erforschung und Entwicklung von HLP könnte zu leistungsfähigeren und effizienteren Werkzeugen für Softwareentwickler führen und die Automatisierung komplexer Programmieraufgaben vorantreiben.
Entdecken Sie die Vorteile gegenüber ChatGPT Plus
Sie nutzen bereits ChatGPT Plus? Das ist ein guter Anfang! Aber stellen Sie sich vor, Sie hätten Zugang zu allen führenden KI-Modellen weltweit, könnten mit Ihren eigenen Dokumenten arbeiten und nahtlos im Team kollaborieren.
Die professionelle KI-Plattform für Unternehmen – leistungsstärker, flexibler und sicherer als ChatGPT Plus. Mit über 50 Modellen, DSGVO-konformer Infrastruktur und tiefgreifender Integration in Unternehmensprozesse.
❌ Kein strukturierter Dokumentenvergleich
❌ Keine Bearbeitung im Dokumentkontext
❌ Keine Integration von Unternehmenswissen
✅ Gezielter Dokumentenvergleich mit Custom-Prompts
✅ Kontextbewusste Textbearbeitung im Editor
✅ Wissensbasierte Analyse & Zusammenfassungen
Erstellen Sie leistungsstarke Wissensdatenbanken aus Ihren Unternehmensdokumenten.Mindverse Studio verknüpft diese direkt mit der KI – für präzise, kontextbezogene Antworten auf Basis Ihres spezifischen Know-hows.DSGVO-konform, transparent und jederzeit nachvollziehbar.
❌ Nur ein Modellanbieter (OpenAI)
❌ Keine Modellauswahl pro Use Case
❌ Keine zentrale Modellsteuerung für Teams
✅ Zugriff auf über 50 verschiedene KI-Modelle
✅ Modellauswahl pro Prompt oder Assistent
✅ Zentrale Steuerung auf Organisationsebene
❌ Keine echte Teamkollaboration
❌ Keine Rechte- oder Rollenverteilung
❌ Keine zentrale Steuerung oder Nachvollziehbarkeit
✅ Teamübergreifende Bearbeitung in Echtzeit
✅ Granulare Rechte- und Freigabeverwaltung
✅ Zentrale Steuerung & Transparenz auf Organisationsebene
Nutzen Sie Mindverse Studio als zentrale Plattform für abteilungsübergreifende Zusammenarbeit.Teilen Sie Wissen, erstellen Sie gemeinsame Workflows und integrieren Sie KI nahtlos in Ihre täglichen Prozesse – sicher, skalierbar und effizient.Mit granularen Rechten, transparenter Nachvollziehbarkeit und Echtzeit-Kollaboration.
Sehen Sie Mindverse Studio in Aktion. Buchen Sie eine persönliche 30-minütige Demo.
🎯 Kostenlose Demo buchenLernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.
🚀 Demo jetzt buchen